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CELL M O D E L  F O R  T W O - P H A S E  M E D I A  

P. K. Volkov UDC 532.529.6 

The cell model is attractive because its provides a uniquely simple description for an extremely 
complicated problem of motion of a liquid mixture with particles or gas bubbles. The main assumption that 
does not provoke objections when identical particles or bubbles of the same volume are arranged regularly, for 
example, as uniform identical layers, is that the entire volume can be represented as an aggregate of individual 
small volumes, i.e., cells containing one particle or bubble [1]. In this case, the determination of motion of 
a two-phase medium reduces to the solution of ordinary (one-phase) hydrodynamic equations in a region of 
given form (with a free surface for the bubble). The problem of the interaction of individual particles with each 
other and with the liquid, which is the main problem in deriving equations of motion of a two-phase medium. 
becomes the problem of formulating boundary conditions at the outer boundary of the cell which should take 
into account the presence of surrounding particles (bubbles). The latter is much simpler for justification and 
realization. The solution of the problem gives a complete description of the internal dynamics of a uniform 
two-phase medium: floating rate of particles (bubbles) and liquid-velocity distribution over the cell, and, 
hence, in the mixture as a whole. This information is sufficient to solve problems of practical importance. 
such as the propagation of heat or admixture in a two-phase medium and the search for the optimal size and 
optimal density of particles (bubbles) and in the mixture that intensify diffusion processes over the entire 
volume. The edge effects of the surfaces bounding the mixture are not considered in this paper. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  A proper choice of the cell geometry governs the accuracy of 
modeling the dynamics of a two-phase medium. It follows from the physical notion of the cell that small 
deviations from the selected cell shape should not change significantly the hydrodynamic characteristics of a 
bubble or a particle. This is the main premise in selecting the shape of the outer boundary of the cell. For 
simplicity, we study a two-phase medium with a layered arrangement of bubbles of the same volume. 

Let us consider two cases: (a) the bubble layers are located at a distance of 2l and the bubbles (points 
in Fig. la) in a layer are uniformly located at the vertices of an equilateral triangle so that each bubble is 
surrounded by six bubbles; as a cell one can use a right prism of height 2l with a regular hexagon in the base 
and a bubble inside with the center at the middle of the axis passing through the centers of the bases; (b) 
bubble layers are located at a distance l and bubbles make a checkered packing in space (Fig. lb) in which 
each bubble is surrounded by six other bubbles in two levels below and above its center; as a cell one can use 
a polyhedron of 14 faces with regular hexagons. 

Cases (a) and (b) characterize the greatest and least density in the packing, respectively, since the 
displacement of the liquid which results in floating occurs in case (a) through the smallest cross section 
between neighboring bubbles. 

Let us formulate physical conditions on the cell boundary that would take into account the presence 
of surrounding bubbles. On the upper and bottom bases, the characteristics should be equal (periodicity 
conditions), and on the lateral surface, displacement and friction are absent. 

The above cell shapes are approximate. The use of these shapes for the calculation of specific 
problems leads to the necessity of solving complete three-dimensional free-boundary problem for Navier- 
Stokes equations. At present, this is not a trivial problem, although there are various calculation techniques 
for these equations. The three-dimensionality in this case is due to the shape of the outer boundary of the 
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cell, and it follows from the physical notion of the cell that the cell is a rather stable formation. Therefore, 
the known procedure of carrying the boundary conditions from the outer boundary of the cell to the given 
surface is justified. As such surfaces, we shall use surfaces of rotation. This makes it possible to go over from 
the three-dimensional to the two-dimensional problem, and this is stipulated by the symmetry  of bubble 
arrangement in the layer. 

In the mathematical  description, it is more convenient to use the coordinate system related to a bubble. 
In this case, bubbles (and cells) are at rest, and the liquid flows between them. We introduce a spherical 
coordinate system (r,/9) with the origin at the center of inertia of the bubble. The Navier-Stokes equations 
describing the motion of a viscous incompressible liquid are written in terms of the stream function ~b and 
the vortex w as [2] 

D2r = - 2 r  s.in/gw; (1.1) 

1 [ s i n  0 w_r ] 2  wr w 2cotan0 r  - r - r + wcotan0r - - + wo, (1.2) 
v r  2 r r 2 sin 2/9 r 2 

0 2 sin/9 0 ( 1 0 )  
D 2 ~ oqr2 -I- r---- ~ oq/9 Sin/9 0"/9 

is the Stokes operator, the subscripts/9 and r denote the partial derivatives of the corresponding functions 
with respect to these variables, and v is the kinematic-viscosity coefficient. 

The following kinematic and dynamic conditions should be satisfied at the free boundary of the bubble 
r (F(r,/9) = - R ( / 9 )  = 0,/9 e [0, 

v .  V F  = 0; (1.3) 

v .  T .  n = 0; (1.4) 

n .  T .  n = ~ r K - p r .  (1.5) 

Here 

1 
n = - { 1 , - I ~ / R } ,  

~/1 + ( R ' / R )  2 

are unit vectors of the normal and tangent to F; 

1 0r 
vr - r2 sin/9 0/9' 

1 

~ 1  + ( R ' / R )  2 

- 1 0 ~  
v o -  rsinO Or 

are the components of the velocity vector v, Pr is the gas pressure in the bubble (pr = const), "1" is the stress 
tensor, K is the curvature of F, and cr is the surface-tension coefficient. 
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From condition (1.4) we have 

1 ( l _ ( ~ ) 2 ) ( l O v ~ _ o 0  -+-OvO ~ ) +  R ' ( O v r  

Taking into account the definition of the vortex 

1(o,, ovo  
w = - 2 r  kSO - v e - r  Or/ 

and kinematic condition (1.3), we obtain 

vo(1 + 2(R ' /R)  2 - R " / R )  

1 + (R ' /R)  2 

Upon similar calculations, we obtain 

OVr R t OU 0 
n . T . n = - p  + 2pu Or R Or 

Substi tuting v~ and vo, from (1.3)-(1.6) we finally find 

where 

v, lavo'~ 
r r 8 0 2  = 0 .  

= 0. ( 1 . 6 )  

RI ~). --+-~ 

r  0) = 0; (1.7) 

~br 1 + 2 ( /~ /R)  2 - R " / R  
w +  R2 sin0 1 + ( R ' / R )  2 = 0 ;  (1.8) 

_q+pgRcosO+2pv[r bO/R+R'r I~ ] 
R2sin0 + --~ w = poo - pr + a K,  (1.9) 

R 2 + 2R '2 - RR"  [R' cos 0 - Rsin0[ 
K =  + 

(R 2 4- R.'2) 3/2 RsinO(R 2 + R'2) 1/2' 

the primed function R(O) denotes differentiation with respect to 0, q is the generalized pressure: q = p + 
pgR cos 0 - p o o ,  p is the pressure, poo is the pressure on the outer cell boundary at the bubble level, g is the 
acceleration of gravity, and p is the density of the liquid. 

As in [3], one can show that  the periodicity conditions in terms of the stream function ~b and the 
vortex w, which reflect the coincidence of the velocity-function values and derivatives over the normal to the 
boundaries F1 and F2, are of the form (F1 and F2 are the cell bases, and x is the floating direction) 

The nonpenetra t ion condition on the lateral surface of the cell gives ~b = 0 in the coordinate system 
of the immovable liquid, since there is no overall discharge of liquid through the section without bubble. In 
the coordinate system related to the bubble, the flow field is superimposed by the translation with a velocity 
- U ,  which in the spherical coordinates (r, O) is described by the function 

!b = - U r 2  sin20/2. (I.11) 

Since the conditions on the cell boundary are identical to those on the free boundary, the expressions 
for the vortex co can be taken from (1.8), where R(0) is a function of the lateral surface. 

On the symmetry  axis 0 = 0, ~r we have 

~ ,=~ ,=  o. (1.12) 

The algori thm of solution of the boundary-value problem (1.1)-(1.12) practically does not differ from 
that  reported in [2]. The  method  of realizing the periodicity conditions (1.10) is covered in [4]. The solution 
of the boundary-value problem in a cell of given geometry is discussed in [5]. 

This paper is devoted to the problem of choosing the shape of the calculation cell and to the analysis 
of the results obtained for different bubble packings with the same gas content. 
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2. Cho ice  of  t h e  C a l c u l a t i o n - C e l l  Shape .  In Fig. la, the calculation-cell shape is obvious: this is 
a cylinder of height 21 (Re is the radius of the cell base). Since the equation of the generatrix of the surface 
is r = Re/s in0,  for the stream function in (1.11) we obtain the constant r = -URn~2. Hence, the lateral 
surface of the calculation cell is the level surface of the stream function. For other cell configurations, the 
shape of the lateral surface can be selected in various ways. 

As the lateral surface of the cell, one can use a part of the sphere of radius Rsphere = ~ + 12 that 
closes the upper and bot tom bases of the cell. This is convenient, because Rsphere = c o n s t  and the derivatives 
of the boundary function entering into the transformed equations of motion are equal to zero. 

Taking into account the symmetry  and periodicity in the arrangement of bubbles in the packing, as 
the boundary of the calculation cell, one can choose the surface generated by rotation of the curve (Fig. 2) 

y = Acoswx + Yc- (2.1) 

Here w = 7rl and yc = Rc + A, where A is the cell parameter. 
These three types of cell are used in the calculations below. For comparisons to be correct, the 

parameters of the cells should be matched. Since the bubble volume remains unchanged in the algorithm 
of solution [2], as a criterion for the selection of the parameters, we use the equality of the volumes of the 
calculation cells. As initial, data  we use the data of [5] for a cylindrical cell with l = 3 and Rc = 3. Since the 
dimensionless bubble radius is 2, the volume gas content is 0.2. 

Thus, for a cell with a spherical surface, we obtain Rsphere -- 3.46 and Re = v/'3, and for cells of the 
third type, Re = (3 + 2/2/3 - A2) 1/2 - A. 

R e m a r k  1. To perform calculations, one should have a description of the cell boundary by a function 
of the type of r = G(O) and know the first and the second derivatives of G(O). For cells of the first two types. 
the derivatives are writ ten analytically. In the third case, G(O) is determined by the bisection method as a 
root of the following transcendental  equation for the variable r with a given 0: 

r sin 0 = yc + A co.s(wr cos 0). (2.2) 

The derivatives are found by differentiating (2.2) using the values obtained for r: 

G'(O) = (A sin(wr cos O)wr sin 0 - r cos O)[(A sin(wr cos O)w sin 0 + sin 0), etc. 

R e m a r k  2. The algorithm of numerical solution of [2] includes a change of variables that  transforms 
the flow region with the unknown boundary (bubble) into a quadrangle whose boundaries are parallel to 
the coordinate lines. As a consequence, the first- and second-order derivatives of the functions describing the 
boundaries of the flow region appear in the equations. If these functions are not smooth, as is the case at the 
angles of the cell shapes considered, the derivatives at the angles undergo a discontinuity, which is extended 
to the line in the calculation domain. Therefore, one should carry out an additional thorough test of the effect 
of discontinuities in the coefficients of the equations on the calculation results. It is bet ter  to test the angles 
using the problem of flow around a spherical bubble when there are only derivatives of the outer-boundary 
function in the transformed equations. 

The effect of the angles on the numerical solution can be diminished by using curvilinear meshes [6] 
instead of the evident transformation of the coordinates. In this case, the equations of motion are written for 
an arbitrary curvilinear coordinate system, and the coordinate system itself is constructed as a solution of 
another elliptic problem. By virtue of this fact, the effect of the angles is localized. 

The simplest realization of the above approach, which makes it possible to study the effect of 
discontinuities in the equation coefficients on the solution, involves the method of transfinite interpolation of 
[7], which was used for free-boundary problems [8] in the ideal-fluid model. If r = G(O) is the equation of the 
outer cell boundary and r = R(O) is the bubble equation (0 E [0, ~r]), then the curvilinear coordinates in the 
flow region are introduced by the formulas 

r(~, r/) = (1 - - q ) G ( ~ ) +  qRp(~), 0(~, r / )= (1 -o)Tr~-Jr r/Gp(~), (~,r/) e [0, 11, 

where r = Rp(~); 0 = Gp(~) is a parametric representation of the function r = R(O). When Gp(~) = 7r~, the 
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TABLE 1 

R~ Fr 

0.1 0.14 
0.5 4.05 
1.0 1.75 

Re We J Vm 

064 0.001 20.4 1.0 
2.08 2 1 . 1  1.14 

72 3.52 23.0 1.56 

I 2 " - ~ I  
I ~ 0 

l 0.1 

10.5 

0 

Fig. 3 Fig. 4 

method of transfinite interpolation is equivalent to the change of variables [2]. The region of reliability of the 
calculations and the relative degree of the effect of discontinuities of the equation coefficients on the numerical 
solution are determined by direct comparison of the solutions obtained using these methods. 

The use of meshes made it possible to solve problems that could not have been solved previously [5]. 
Moreover, if the flow region is described by functions with large gradients (the flow region is stretched in one 
direction), smooth boundaries of the flow region were found to affect strongly the solution. 

3. H y d r o d y n a m i c s  o f  Cel ls  o f  t h e  Se l ec t ed  Shapes .  The mathematical  model describing free- 
boundary viscous flows in a region of specified geometry contains a great number of input constants, which 
characterize both the physical properties of the medium and the geometry of the flow region. Simulating 
problems of the stationary rise of bubbles introduces a new constant in the model, namely, the floating rate 
U, which is not known in advance. The procedures of nondimensionalizing, as a rule, use U as a characteristic 
velocity. As a result, the equations include a set of dimensionless complexes that are not always independent. 
Therefore, only upon solving the problem can one determine to which particular medium and bubble size the 
data obtained correspond. Thus, for the comparison of the results for different cell geometries to be correct. 
care should be taken to see that  the numerical solutions correspond to the same medium and the same linear 
size of the bubble. 

Here, as in [5], M = p3t.,4g/0"3 - - -  Wea/Fr Re 4 is used as a characteristic of the medium and the capillary 
Laplace constant 6~ = (o'/pg) 1]2 is vsed as the linear size. Below, the solutions correspond to M _ 2.10 -6 and 
the following three values of the length R~, = a/6,  [a = (3V/4~r) 1]3, where V is the bubble volume]: R ,  = 0.1. 
0.5, and 1.0. The values of the Reynolds number Re = U2a/u and the Weber number We = pU22a/o " for which 
a solution is obtained for the given M (the Froude number Fr = U2/9 a is the parameter  to be determined) 
are listed below. 

Calculations for a Cell with a Spherical Lateral Surface. Table 1 lists data  for three radii of a bubble 
in a cell with the same values of Re = vf3 and Rsphere = 3.46. Here J is the diffusion of admixture from the 
bubble [5] and Vm is the maximum velocity of the liquid on the bubble. 

The characteristic flow pattern is shown in Fig. 3 (Ra = 1, the solid curves are isolines of the stream 
function, and the dashes represent the liquid-velocity vectors in different sections). For Ra = 0.1, the bubble 
is spherical, and for Ra = 0.5, it is somewhat flattened. For Ra = 0.1 and 0.5, the values of Fr are much larger 
than those for a bubble in a single vertical chain with the same distance between the bubble centers, i.e., the 
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TABLE 2 

N A Re Fr Re We J V,~ Ra 

0.04 0.34 0.001 22.7 1 .27 0.1 
1 1.0 1.43 0.91 18 0.48 24.6 1.53 0.5 

0.69 45 1.4 29.7 2.12 1.0 

0.026 0.28 0.001 21.6 1.12 0.1 
2 0.75 2,15 0.89 18 0.44 23.5 1.4 0.5 

0.85 50 1,72 27.4 1.84 1.0 

0.19 0.24 0.001 22.3 1.11 0.1 
3 0.5 2.46 0.9 18 0.44 23.5 1 .39 0.5 

0.86 50 1.72 26.7 1.87 1.0 
0.44 80 2.0 32.0 2.7 1.6 

0.1 
0.5 

4 1.0 
1.5 

presence of surrounding bubbles leads to an increase in the floating rate, which is difficult to interpret from 
a physical viewpoint. Calculations for other Rr and Rsphere (but for the same cell volume) give significant 
differences in Fr values. 

Thus, one can conclude that  part of a sphere as the lateral surface of the cell is not a good choice. 
Calculations for a Cell with the Lateral Surface Described by (2.1). The results of our calculations for 

the amplitudes A = 1, 0.75, 0.5, and 0.25 with Rc = 1.43, 2.15, 2.46, and 2.74, respectively (the same cell 
volume), are given in Table 2. 

Comparison of the Fr, Re, We, J ,  and V,n values for the same R~ shows a slight spread of these values 
for Ra /> 0.5. The Fr values are everywhere smaller than those for the case of a single bubble chain with 
the same l. For bubbles with R~ ~ 1, flows without separation are still observed, but Ra = 1 is likely to be 
critical: there is a stagnation zone at the trailing part of the bubble (Fig. 4 corresponds to N = 1 in Table 
2). Whereas for R~ = 1.1, there is already a separation which fills the gap between the bubbles near the axis. 
Figure 5 gives the flow pat tern for N = 3 and Ra = 1 obtained by joining several figures of the same cell along 
the vertical (the symmetry  condition) and from the side (the cosine function is periodic and the superposition 
is free of clearances). The dashed curves show the cell boundaries. 

The flow pat tern for Re = 48 and We = 1.6 (N = 4 and Ra = 1) is close to that  presented in Fig. 5. 
The cell boundary practically repeats the shape of the last isoline of the stream function. This is apparently 
the most important circumstance that allows one to choose the given cell shape and which is also supported 
by the velocity distributions on the bubble. Thus, for N = 1 and 2 and Ra ~< 0.5, the profiles are two-humped 
with a local minimum in the region of the bubble equator. For N = 3, the profiles are also two-humped 
(but with a small ampli tude between the local maxima and minima), but only for Ra = 0.1. For N = 4, the 
velocity profiles for all Ra are bell-shaped with a maximum at the equator of the bubble. 

Thus, for the given bubble-to-cell volume ratios, the vertical and horizontal distances between the 
bubbles, and hydrodynamic-parameter  values, as a cell for the calculations of the local characteristics of a 
two-phase medium, one should choose the shape corresponding to N = 4 in Table 2, 

4. L iqu id  D y n a m i c s  in a Cel l  of  a T w o - P h a s e  M e d i u m .  The calculations for N = 4 (Table 2) for 
a given Ra give insight into the motion of the liquid in the cell, and, hence, in a two-phase medium composed 
of bubbles of the same volume. An increase in R~ corresponds to liquid mixtures with larger-size bubbles. 
Since the data  are presented for a medium with M = 2- 10 -6 and nondimensionalizing was performed over 
the bubble floating rate U, the ratio of the floating rates of bubbles for the two mixtures denoted by the 
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subscripts 1 and 2 is of the form 

U1/U2 = (FrzR~,I/Fr2R~,2) 1/2. 

For N = 4, we obtain 

Uo.1/Uo.s ~ 0.05, Uo.5/Ul.o ~- 0.73, UI.o/U1.5 ~- 1.06. (4.1) 

It follows from (4.1) that bubbles whose radius is equal to the capillary constant have the highest 
floating rate. In this case, we still have flow without separation, as in Fig. 5. There is a separation on bubbles 
of greater diameter, and a stagnation zone is formed among the bubbles near the axis (Fig. 6). Thus, the 
bubbles and the part of the liquid between them float. This leads to a decrease in the floating rate. Figure 7 
shows graphs of the liquid velocity u on the bubble: curve 1 corresponds to Re = 0.1 (a spherical bubble and 
Stokes flow), curve 2 corresponds to Re = 0.5 [the bubble is flattened (X -~ 1.1) and slight asymmetry appears 
in the graph], curve 3 corresponds to Re = 1.0 (a stagnation zone exists in the trailing part, but there is no 
separation yet), and curve 4 corresponds to Re = 1.48 (there are return flows in the region of front points). 

Figure 8 shows graphs of ] (the local diffusion flow of admixture from the bubble surface [5]) that 
correspond to the above R~ values. On spherical and slightly deformed bubbles, the maximum is in the region 
of the leading front point, into which the liquid flows and in which the boundary layer is the thinnest (Stokes 
flow). As the bubble is deformed, the maximum point is shifted to the equator, where the velocity is maximal. 
Table 2 presents the overall diffusion J from the bubble. In the presense of separations, the equator region 
makes the main contribution of 26.86, and the contributions of the leading and trailing parts are 1.35 and 
2.91, respectively. 

Using the data of Table 2, one can estimate the overall diffusion from systems of bubbles as applied 
to the problem of bubbling through a liquid layer per unit time. Indeed, the overall diffusion in the volume 
is proportional to the number of bubbles n. Then, for two systems with different bubbles, the ratio of the 
overall diffusions ,] is of the form [5] 

J 1 / , ]  2 = (alU1/a2U2)l/2(J1/J2)(nl/rt2)(gl/U2). (4.2) 

The first two cofactors give the ratios of diffusion flows from a single bubble of the systems, the third cofactor 
gives the ratio of the number of bubbles in the volume considered, and the fourth gives the ratio of the floating 
rates. 
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For the four cases from (4.2), we obtain 

J0.1/J0.5 ~- 0.62, Jo.5/J].o ~ 3.2, J1.0/JI.5 ~- 2.5. (4.3) 

It follows from (4.3) that  a system with bubbles with a radius of 0.5 of the capillary constant has the largest 
overall diffusion of the admixture  from bubbles to the liquid in the case of bubbling through a liquid unit per 
unit time. 

5. C o m p a r i s o n  o f  S o l u t i o n s  for Two  T y p e s  of  Cell .  On the whole, the liquid dynamics in a 
cylindrical cell (packed as in Fig. la) has the same regularities as those described in Sec. 4. Thus, the ratio of 
floating rates for different Ra is the same as in (4.1). Flow separation on the bubble occurs even for R~ = 1 
(but for Ra = 0.9 separation does not yet occur). Comparison of the floating rates for different cell types for 
Ra = 0.1, 0.5, 1.0, and 1.5 gives U(b)/U(~,) = 1.2, 1.2, 1.16, and 1.13, respectively. Thus, the occurrence of a 
developed vortex wake decreases the difference between the floating rate of bubbles. 

Figure 9 shows the flow pat tern  for Ra = 1.44 (Fr = 0.37, Re = 60, We = 1.56, J = 34, and V,.n = 3.06). 
Figures 6 and 9 correspond to the same medium with a very slight difference in the bubble size. The shape 
and degree of deformation (X - 1.7) of the bubbles are practically the same. 

For Ra = 0.5, the conclusion on the efficiency of a mixture with bubbles for admixture diffusing applied 
to gas bubbling through the liquid volume remains valid. 

Taking into account the aforesaid and the fact that,  in going over to the axisymmetric problem, the 
cell base area is decreased by approximately 10%, and this is the most significant effect on a cylindrical cell 
(the floating rate decreases), one can speak of practically equal floating rates of bubbles in the mixture. In 
this case, the requirement of uniform distribution of bubbles in the liquid, which determines the cell geometry 
and the volume gas content,  is of importance. 

To determine unambiguously the flow type, floating rate of bubbles, and other integral characteristics. 
it is insufficient to assign only the average volume gas content ignoring the bubble size. 

6. Conc lu s ion .  The two cell types considered in the paper transform from one into another upon 
vertical displacement of one vertical bubble chain relative to six others surrounding the chain. However, with 
such an arrangement of bubbles, the region is divided into cells that are not almost equivalent. For an adjacent 
bubble, we obtain the following packing around it: there are three bubbles at the level of the bubble and at 
the levels that are higher and lower by I. These bubbles are turned through 120 ~ so that one can see from 
above a regular hexagon of bubbles. Nevertheless, this can be considered as a cell. 

The numerical results suggest that in cells of the same volume and the same height, the integral 
characteristics of the bubble are the same. A right cylinder can be considered as a cell. If the cell diameter is 
greater than its height, the effect of the surrounding bubbles in the horizontal layer on the floating rate will 
be less than that of the bubbles in the vertical chain. For cells whose radius is 4-5 bubble radii, we have an 
essentially floating chain. For cells whose radius is less than 2 bubble radii, the bubble floating rate depends 
only slightly on the cell height. 

To determine the characteristics of a two-phase medium more exactly, it suffices to clarify the linear 
dimensions of the cylindrical cell and to perform calculations taking into account the parameter  M of the 
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medium and the bubble volume. 
The presence of a maximum in the dependence of the bubble floating rate on its volume is related to 

flow separation and the appearance of a stagnation zone behind the bubble. The buoyancy force goes to the 
displacement of part of the liquid together with the bubble. 

The extremum properties of the admixture diffusion from the bubble are caused by the disproportional 
decrease in the floating rate with a decrease in the bubble size as compared with the increase in the number 
of bubbles with a given volume gas content. 

We were unable to obtain stationary solutions for great R~,. The bubble boundary accomplishes wave- 
like oscillations, and the iteration process does not converge. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
00879a). 
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